
 

ABSTRACT. Probabilism in epistemology does not have to be of
the Bayesian variety. The probabilist represents a person’s opinion
as a probability function; the Bayesian adds that rational change of
opinion must take the form of 

 

conditionalizing on new evidence. I
will argue that this is the correct procedure under certain special con-
ditions. Those special conditions are important, and instantiated for
example in scientific experimentation, but hardly universal. My
argument will be related to the much maligned Reflection Principle
(van Fraassen, 1984, 1995), and partly inspired by the work of Brian
Skyrms (1987).

Probabilism in epistemology does not have to be of the
Bayesian variety. The probabilist represents a person’s
opinion as a probability function; the Bayesian adds that
rational change of opinion must take the form of con-
ditionalizing on new evidence. I will argue that this is
the correct procedure under certain special conditions.
Those special conditions are important, and instantiated
for example in scientific experimentation, but hardly
universal. My argument will be related to the much
maligned Reflection Principle (van Fraassen, 1984,
1995), and partly inspired by the work of Brian Skyrms
(1987).

 

1.  Modeling opinion: How we change our minds

On a very simple-minded view of opinion, we have at
each moment a set of full beliefs, which we update by
adding our new evidence. Both the prior beliefs and
the new evidence are propositions, the latter coming in
at a steady stream. The set of full beliefs in question
constitute our explicit opinion; whatever follows from
them logically constitutes our implicit opinion. There is
a second operation besides adding evidence which is
more a matter of book-keeping: the process of trans-
ferring some beliefs from the implicit column to the
explicit column – i.e. enlarging the set of explicit
full beliefs by means of purely logical deduction. This

operation we can without loss of generality think of as
simple repeated application of Modus Ponens.

Not much less simpleminded is the core model of the
orthodox Bayesians. Our opinion consists of a proba-
bility function; new evidence consists of propositions
to which we give probability 1. Updating cannot be
simply adding now, but there is a Modus Ponens like
operation, Conditionalization, which counts as purely
logical updating. If P is my prior opinion, and E my new
evidence, then P

 

′ = P( |E), defined as P( &E)/P(E), is
my new (posterior) opinion – the change of P into P′ is
called conditionalization on E. (I will leave aside how
the distinction between explicit and implicit opinion can
also be added in here.)

There are many criticisms of these simple-minded
views. But there are also supporting arguments. A
central sort of supporting argument attempts to estab-
lish this:

Conditionalization is the only admissible form of
updating if the second model is assumed correct
in other respects. 

How shall we view those arguments? I view them as
follows: there are special conditions under which they
lead to the correct conclusion. In these circumstances
it is accurate to represent a certain aspect of someone’s
prior opinion and new evidence in the above manner. In
addition, these special conditions also entail that on this
occasion, the updating of the prior opinion must be by
conditionalization on that new evidence. 

The emphasis is on “special.” Of course, some
aspects of those conditions may be quite general aspects
of the human condition, and the rest may be character-
istic of a specially important sort of situation. In fact,
one instance of this special sort of situation has, I think,
tacitly guided certain branches of modern epistemology:
the well designed scientific experiment or controlled
observation.
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What I shall do here is add another argument for
Conditionalization, but one which is explicitly premised
on that sort of situation, and on a certain view of what
is crucial to it. Some of what is crucial to it is, I think,
also crucial to all rational management of opinion –
some, but not all (van Fraassen, 1989, Chapter Seven).

2.  A controlled epistemic situation

Imagine that we are waiting to observe the outcome of
some process and that we are quite sure that we know
what the possible outcomes are. Imagine in addition that
we know exactly how we shall update our current prior
opinion P in response to this outcome. Finally, imagine
that the resulting posterior opinions P′ are (in this
context) uniquely characterized by the outcome which
they take to be the actual one, and to which they accord-
ingly give probability 1. In the case of an experiment,
for example, the i-th posterior opinion is the one that
gives probability 1 to the i-th possible outcome of the
experiment.

What I call here our prior and posterior opinion are
really a small part of our opinion, restricted to propo-
sitions about the process in question, and perhaps some
hypotheses which we are testing in this situation. I have
now included some clauses assuming that we currently
have opinions about our own opinions (notably, what
our future opinions can be at the end of the process).
But while these remarks are an important part of the
characterization of this situation (as I see it), they will
not have any role in our central argument. So the propo-
sitions in the domain of P are restricted to ones solely
about the process observed and hypotheses about it,
excluding propositions about the observer. I make these
initial suppositions somewhat more precise as follows:

There is a partition {Bi: i in I} such that the
possible posteriors form a set {P′i : i in I} with
P′i (Bi) = 1.

By a partition I mean an exhaustive set of mutually
exclusive propositions. Again, these propositions could
plausibly include the distinctive information that the
experiment had its i-th possible outcome. Note then that
these posteriors are orthogonal to each other: each gives
1 to a proposition to which all the others give 0.

I will omit the annoying “i in I” whenever only one
index set is being used; I will for the time being assume
that all index sets are finite.

3.  An epistemic principle

We must now discuss how the posteriors in this situa-
tion are to be related to the prior. This cannot be a dis-
cussion of how things actually happen in the world,
since some experimenters are morons, some take drugs,
and some suffer strokes while observing and reasoning.
But we can ask how the posteriors are to be related to
the prior in a case of unobstructed rational management
of opinion – the sort of thing that I hope goes on when
I am trying to balance my bank book and when Millikan
measures the charge of the electron, for example.

Here the informal remarks about the observer’s own
prevision of how he will update his opinion play the
central motivating role. In the case of rational manage-
ment, taken to be unobstructed – I leave other cases
aside for now – this prevision can only derive from a
conscious commitment to certain policies or intentions
that characterize this observer’s view of how that is to
be done responsibly. We may not be able to restrict these
policies very far a priori. But I have argued on earlier
occasions (1984, 1995) that they must meet a certain
minimal condition:

General Reflection Principle: the prior opinion
must fall within the range spanned by the foreseen
possible posterior opinions.

Just a brief aside: the Reflection Principle itself follows
from this General Reflection Principle only if we
assume that our future opinion is itself represented by
a random variable – that the language includes resources
for describing and attributing future opinion to oneself.
That is not being assumed here, so we shall be relying
on something weaker than the original Reflection
Principle.

Under opinion I include here the subjective proba-
bilities assigned to propositions, but also (following the
historical precedent already set by Pascal, Fermat, and
Huygens) the expectation values for measurable quan-
tities (“random variables,” rv) deriving from those sub-
jective probabilities. I will restrict discussion here to
simple random variables: quantities with only a finite
range of possible values. A simple rv is thus a quantity
f for which there is a partition {Fj: j in J}, with J finite,
such that f takes value j if and only if Fj is the case.
The expectation value of f depends on the probability
function P; it is the sum of the factors jP(Fj), and I shall
denote it ExpP(f). Thus the General Reflection Principle
takes the more precise form:
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General Reflection Principle: for each rv f, the
prior expectation value ExpP(f ) lies within the
interval spanned by the foreseen possible poste-
rior expectation values {ExpP′i (f ), i in I}.

4.  What happens if we Conditionalize?

Before trying to show that Conditionalization is incum-
bent on us in the above sort of basic epistemic situation,
let us look at what happens if one does Conditionalize.

Conditionalization is really orthogonal decomposi-
tion. That is, if {Em: m in M} is a partition, we can
exhibit an orthogonal decomposition of P as follows:

P = ∑{P(Em)(P |Em): m in M}

The components P( |Em) are mutually orthogonal prob-
ability functions; they are the Conditionalizations of P
on the propositions Em. The sum is a weighted sum (a
convex combination, a mixture) in that the coefficients
P(Em) are non-negative and sum to 1.

Thus the rule to update by Conditionalization says
that in the basic epistemic situation I described, the
orthogonal family {P′i } must be exactly the family
{P( |Bi)}.

The General Reflection Principle is certainly obeyed
when someone follows the rule of Conditionalization.
The reason is that a convex combination always lies
within the interval spanned by its components. This is
the elementary but infinitely useful: 

Mixing Principle: if P is a mixture of {Qi: i in I}
then for all A, P(A) is in the interval [{Qi(A): i in
I}].

(I use square bracket notation for an interval spanned
by a set: the span [X] of set X is the smallest closed
convex set that contains all members of X.) The Mixing
Principle derives of course from the simpler principle
that a convex combination of numbers lies in the
interval spanned by its components.

So we have now seen that if the rule of Condi-
tionalization is obeyed, then both our basic principles
are satisfied: 

a) the possible posteriors form an orthogonal set
indexed by a partition of propositions to which they
give 1, 

b) the General Reflection Principle holds. 

But the rule of Conditionalization was meant by its
advocates to be universal, not just applicable in those
“controlled epistemic situations” which are or resemble
well-designed experimental set-ups of a certain sort. I
will investigate here only the question whether, if our
two basic principles are satisfied – which I think is
typical of such situations but not at all the case in
general – the updating must be by Conditionalization.

5.  Some caveats about mixing

It may already look as if we are but steps away from
proving that updating must be by Conditionalization,
given the General Reflection Principle. But there are
obstacles. The most important of these is that the
converse of the Mixing Principle does not hold. This we
can see from a simple counterexample.

Let’s take a three-point space generated by a parti-
tion of three propositions, {A, B, C}. Then there are
then exactly 8 propositions, including the tautology
T and the self-contradiction F. I will tabulate the
remaining six propositions and the probabilities
assigned to them by three probability functions:

A B C AvB AvC BvC
–––––––––––––––––––––––––––––––––––––––––––––––––––––––
q1 0.4 0.6 0 1 0.4 0.6
q2 0 0 1 0 1 1 
p 0.2 0.2 0.6 0.4 0.8 0.8

Notice that q1 and q2 are orthogonal to each other
and that for all propositions E in the relevant domain,
p(E) lies in the interval spanned by q1(E) and q2(E).
But any mixture of q1 and q2 will give to A and B either
different values or zero. So p is not a mixture of those
two functions.

I should add one more caveat, to fix our thinking
about convex sets and combinations, though it won’t
play an important role here. If all components assign
the same odds or conditional probability to a pair of
propositions, so will the mixture. But it is not the case
in general that the odds or conditional probabilities
assigned by a mixture are within the span of those
assigned by the components (“Simpson’s paradox”).
Thus the General Reflection Principle should also not
be thought of as extending too far: it pertains to the
basic sort of opinion representable directly within the
discourse of expectation values.

I said that conditionalization is just orthogonal
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decomposition, but I only showed above that the con-
ditionalizations on a partition form an orthogonal
decomposition. The converse holds too. From here on
I will take it for granted that {Bi: i in I} is a partition,
and rely on this in statement and proof of results.

T1. If {Qi: i in I} is an orthogonal family of proba-
bility functions with Qi(Bi) = 1 then P is a mixture
of {Qi} if and only if P( |Bi) = Qi for all i in I
such that P(Bi) > 0.

We already saw that P is a mixture of its conditional-
izations on the partition. To complete the proof, assume
that 

P = ∑ {ciQi}.

and that the numbers ci are non-negative and sum to 1.
(If some of these coefficients are zero, the proof is easily
amended.) Then for all A which are part of Bi, P(A) =
ciQi(A). Since Bi is part of Bi and Q(Bi) = 1, this implies
that ci = P(Bi). But if that number is not 0 then P(A) =
P(Bi)P(A|Bi) so P(A|Bi) = Qi(A). This argument is
general for all parts A of Bi and for all indices i in I,
so P( |Bi) = Qi for all i in I for which P(Bi) > 0.

6. Identifying all the mixtures of an orthogonal 
family

Expectation values combine linearly; they “mix” along
with their probability functions. Thus:

LEMMA. If P is the mixture Σ{ciQi} then for any rv f,
ExpP(f ) = Σ{ciExpQi(f )}.

We do not require here that the Qi are orthogonal, nor
that the rv are simple. For simple rv, all that concern
us here, the lemma follows at once from the definition
of expectation.

T2. If {Qi: i in I} is an orthogonal family of proba-
bility functions with Qi(Bi) = 1 then P is a mixture
of {Qi} if and only if for all simple rv f, ExpP(f )
is in the span of {ExpQi(f ): i in I}.

Assuming the antecedent, the implication in the “only
if” direction follows at once from the Lemma and the
mixing principle for ordinary convex combinations of
numbers.

Assume the antecedent and also that for all simple rv
f, ExpP(f ) is in the span of {ExpQi(f ): i in I}. To prove
that P is a mixture of the Qi we see by T1 that it will
suffice to prove that P( |Bi) = Qi whenever P(Bi) > 0.

To do this let us introduce a bit of notation for certain
rv that we can associate with the members of our par-
tition. 

DEFINITION. i% is the rv which takes value 1 – r if
ABi, –r if Bi – A, and 0 under all other conditions.

LEMMA. If P(Bi) > 0 then P(A|Bi) = r iff ExpP(i%) =
0. 

For in that case ExpP(i%) = P(ABi) – rP(ABi) – rP(Bi

– A) = P(ABi) – rP(Bi), which equals 0 iff P(ABi) =
rP(Bi), hence if r = P(A|Bi).

To continue the argument for the theorem, choose
r = Qk(A), and suppose A is part of Bk. If j >< k then
ABk and Bk – A both receive probability 0 from Qj, so
then ExpQj(k%) = 0. If j = k then that expectation value
equals Qk(ABk) – rQk(Bk) = Qk(A) – r. But we chose
r = Qk(A), so once again ExpQj(k%) = 0.

Thus the expectation value of k% is in this case 0
for all the Qj. But we have assumed that the expecta-
tion value of any simple rv for P is in the span of those
for the Qj. Therefore ExpP(k%) = 0 also. But then, by
the Lemma, P(A|Bk) = Qk(A) as was required to be
shown.

7. Conditionalization rationally required in this 
case

We go back now to the basic epistemic situation in
which the foreseen possible posteriors form an orthog-
onal family. If the person involved there adheres to the
General Reflection Principle, we conclude by T1 and
T2 that his or her possible posteriors are exactly the con-
ditionalizations of his prior on the “outcomes” of the
process under observation. That is, s/he follows the rule
of Conditionalization in situations of this sort.
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